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Abstract. Nonparametric global optimization methods have been developed that determine the 
location of their next guess based on the rank-transformed objective function evaluations rather than 
the actual function values themselves. Another commonly-used transformation in nonparametric 
statistics is the normal score transformation. This paper applies the normal score transformation to the 
multi-univariate method of global optimization. The benefits of the new method are shown by its 
performance on a standard set of global optimization test problems. The normal score transformation 
yields a method that gives equivalent searches for any monotonic transformation of the objective 
function. 

Key words. Bayesian global optimization, nonparametric statistics. 

Introduction 

The most general situation that can be encountered in global optimization is one 
in which we have no prior knowledge about the form of the objective function, 
and have access only to evaluations of this function (i.e. no derivative informa- 
tion). This suggests the use of stochastic processes to model the unknown 
objective function. A general stochastic process has multiple maxima and minima, 
and permits a wide range of functions as allowable realizations of the process. 
Kushner [1] proposed a univariate global optimization method based on using a 
Brownian motion model for the objective function. This method selects the point 
at each iteration that maximizes the probability of exceeding the current optimum 
by a predetermined constant. Stuckman [2] heuristically extended this method to 
higher dimensions using a multi-univariate approach. 

One disadvantage in assuming a Brownian motion model for the objective 
function is that the resulting conditional probability density functions are normal 
(Gaussian). From a computational view, normality simplifies the calculations 
involved in finding the next point. However, strict normality cannot be assumed 
or justified in a typical objective function. Perttunen [3] proposed a nonparamet- 
tic method of global optimization that did not require the assumption of normali- 
ty. This method transforms the objective function evaluations into ranks, and 
performs all calculations using the ranked objective function evaluations rather 
than the actual objective function evaluations themselves. Perttunen and Stuck- 
man [4] applied the rank transformation to the multi-univariate method. This 
application significantly decreased the number of evaluations needed for conver- 
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gence with 1% error for the standard test functions proposed by Dixon and Szeg6 
[51. 

Another common transformation used in nonparametric statistics is the normal 
score transformation. Normal scores are defined as "typical" values of the order 
statistics in a sample from a normal distribution. By performing standard paramet- 
ric statistical tests on the normal scores of the data, the validity of the statistical 
test no longer depends on whether the data are normal [6]. Furthermore, the 
resulting test has the same asymptotic efficiency as parametric tests for normally- 
distributed data, and larger efficiency for non-normal data [7]. 

The application of the normal score transformation to the multi-univariate 
method is presented in this paper. The performance of the new method is 
compared to the multi-univariate and rank-transformed multi-univariate methods 
using standard test functions. 

Multi-Univariate Search with Normal Score Transformation 

Let our objective function be given by f (x) ,  where f :  ~"--> ~ over a closed 
hypercube S defined by: 

S = all x i satisfying b/1 <~ xij <~ bj2 (1) 

where xq is the j th component of xi, j = 1, 2 , . . . ,  n and where bjl and b/2 are the 
lower and upper bounds on the jth component of x~. The goal is to find the global 
minimum f (x  °) such that 

f (x  °) <-f(x) for all x E S .  (2) 

The multi-univariate method assumes that the unknown function can be 
modeled as samples of a Brownian motion random process along each possible 
one-dimensional line segment passing through the search domain. An outline of 
the n-dimensional search strategy (as given in [2]) is as follows. 

(1) Evaluate the function at the 2" corner points of the n-dimensional hy- 
percube. In other words, evaluate f(x~) for all x~ such that xq = bjl or xq = bi2 for 
all xq, j =  1, 2 , . . . ,  n. 

(2) Form a set of line segments 1st which connect each pair of corner points x s 
and x, (for s ~ t) where the function has been evaluated. 

(3) Restrict the search to points along the line segments. Consider a given line 
segment ls,. Assuming the unknown function can be represented by a Brownian 
motion process along each one-dimensional trajectory, the expected value con- 
ditioned on the known evaluations of the function f(xs) and f(xt) can be found by 
[1]: 

E[f(x)] = f(x,) + ~(f(x , )  - f (x , )) / l l~, l  (3) 

where x is a point on the line segment let, some distance A from the point x~, 
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0 <~ A ~< I lst[. The conditional variance is given by 

Var[f(x)] oc z(l/s,I - a ) / l l , , l .  (4) 

One result obtained by assuming the Brownian motion model is that the 
probability density function of the objective function is normally-distributed at 
each point [1]. Therefore, for each point in this line segment, we can find the 
probability that the unknown objective function will be less than f r o ( X ) -  Km,  

where fro(x) is the smallest value of the function found after m guesses and K m is 
some positive constant. This probability is equal to the cumulative normal 
distribution function evaluated at (fm (X) -- Kin) - E[  f(x)] &/Var[ f(x)]. The loca- 
tion of the point that maximizes this probability over the line segment will be 
included in the set of possible choices for the next guess. The expression for A, the 
point of maximum probability in the line segment, is given by [1], [2]: 

[ f m ( x )  --  g m  - f(xs)l l /s , I  
x = (5 )  

[2f,,(x) - 2 K  m - f ( x , )  - f ( x t ) ]  " 

The probability of reducing the current minimum by K m at this point A is a 
monotonic function of the argument of the cumulative normal distribution 
function. The square of this argument, denoted by Amin, is given by [1], [2]: 

4 ( f m ( X  ) -- K m - f ( X s ) ) ( f m ( X  ) -- K m - f ( x , ) )  
A m i n  = I1,,I ( 6 )  

Now, the normal score transformation will be applied to the functional 
evaluations. In other words, for all of the above calculations the kth smallest 
functional evaluation will be replaced by a "typical" value of the kth smallest 
number from a normal sample with mean zero and standard deviation 1. The 
equations for a and A mi n become 

[ , { L ( x ) ,  m} - g m - -  * { f ( X s )  , m}]l/~,l 
A = [2~b{f,,.(x). m} - K m - -  ~{f(xs).  m} -- ~ { f ( x t )  , m}] (7) 

4( t l l { fm(X) ,  m }  -- K m - * { f ( x s ) ,  m }  ) ( $ { f , . ( x ) ,  m }  - K , .  - , {  f(x,), m}) 
A m i  n = [lst I ( g )  

where ${f(x) ,  m} is the normal score of the function evaluation at x after 
m iterations. 

Assuming there are no ties in the data, the normal score is defined to be the 
j / ( m  + 1) quartile of the normal distribution. This can be expressed as [6]: 

=® 'fJk-  (9) 
/ m + l J  

where ~ -  1 {. } is the inverse of the standard normal distribution function. Since no 
closed-form expression exists for ~-1{.},  it must be calculated numerically. The 
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approximation used by the MINITAB statistical software package is the following 
[8]: 

( ( j - -3 /g~° '14  ( j - - 3 / 8 )  °'14) 
¢{ j ,m}~4 .91 \ \m~_- l -T4 /  - 1 m + l / 4  • (10) 

This approximation is used in the computer implementation of the method. 
After  performing the calculations in equation (8) over each line segment, the 

values of A mi n are compared to find the line segment which contains the point 
with the lowest Ami n (since Ami n is a monotonic function of the probability of 
reducing the current minimum by Kin). In the line segment with the minimum 
A min, we can use equation (7) to give the location of the point which has the 
highest probability of being less than the smallest value found by at least K,n over 
the set of line segments. This point becomes the next guess xm+ 1. 

(4) The function is evaluated at the point Xm+ 1. The line segment which 
contains the new point is then subdivided into two segments about the new point. 
Line segments are then added which connect the new point to the nearest 3 old 
points, and the value of A min is found for each of the line segments including the 
new ones. This process of employing equations (7) and (8) to find the next guess, 
evaluating the function at the next guess, and forming new segments is repeated 
iteratively. 

Specifying the Search Parameter K M 

Before this algorithm can be implemented, the selection of the search parameter 
K m must be considered. In the multi-univariate method [2], K m is selected at each 
iteration as a function of the difference between the maximum and minimum 
function evaluations found. In the rank-transformed multi-univariate method, K m 
is found as follows [4]. If n is the predetermined total number of functional 
evaluations that we want to use, then ideally we want to minimize the expected 
minimum found after N evaluations. At  each step, the point that maximizes the 
pseudo-probability of being the minimum for all N evaluations is selected. Thus, 
on the rnth iteration the rank we are trying to attain is m - N (which is obviously 
impossible by definition of ranks, but acts as a relaxation-type scheme for the 
search method).  This can be done by letting K m be N - m  + 1 on the ruth 
iteration. This gives a more global search in the early iterations and a progressive- 
ly more local search as the number of iterations approach N. 

For the normal-score transformed method, one way of forming K m is in terms 
of standard deviations of a standard normal distribution. We can say that our goal 
is to find normal-scored function evaluations that are a least some constant 
number of standard deviations below the mean. If we select 3 standard deviations 
as our constant (which corresponds to a probability of approximately 0.001) then 
the expression for K m is: 

K m = ~b{fm(X), m} + 3 .  (11) 
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In this case, we must keep the total number of evaluations less than the 
reciprocal of 0.001, in other words, less than 1000. After substituting K m into 
equations (7) and (8) and simplifying, the equations for A and Ami n become: 

[3 + ~b{f(xs), m } ] l l s t  I 

a = [6 + g,{f(x,), m} + g,{f(x,), m}] (12) 

4(3 + ff{f(x~), m))(3 + ff{f(x,), m}) 
A m i n  = II ,1 (13) 

Using this technique for choosing Km has the advantage that, unlike the 
rank-transformed multi-univariate method, the rate of convergence of the optimi- 
zation method will not be dependent upon the a priori  selection of the.number of 
evaluations. Thus, a search which evaluates the unknown function 200 times 
reaches the same results for the first 100 evaluations as does a search of only 100 
evaluations. This makes the method more straightforward for the user and makes 
the comparison to global optimization less ambiguous if based upon the number 
of evaluations necessary for convergence. 

Results on Standard Test Functions 

The performance of the new method is examined using the standard set of test 
functions proposed by Dixon and Szeg6 [5]. The observed fmin is given at each 
iteration in which a new minimum function evaluation is found. The results are 
shown for up to 500 evaluations. 

The first test functions used are the Shekel family: 

f ( x )  = - ~  [ ( x -  a i ) r ( x -  ai) + ci] -1 (14) 
i=1 

where x = ( x  1 , x 2 , . . . , x . )  r, a = ( a l ,  a 2 , . . . , a n )  ~, 0~<xj<~10, j = l , 2 , . . . , n ,  
and the values for a~ and c i are shown in Table I. 

The observed fmin VS. the number of evaluations for m = 5, m = 7, and m = 10 
for Shekel's (SQRIN) function are given in Tables II, III, and IV respectively. 

Table I. Data for Shekel function 

i a i c i 

1 4.0 4.0 4.0 4.0 0.1 
2 1.0 1.0 1.0 1.0 0.2 
3 8.0 8.0 8.0 8.0 0.2 
4 6.0 6.0 6.0 6.0 0.4 
5 3.0 7.0 3.0 7.0 0.4 
6 2.0 9.0 2.0 9.0 0.6 
7 5.0 5.0 3.0 3.0 0.3 
8 8.0 1.0 8.0 1.0 0.7 
9 6.0 2.0 6.0 2.0 0.5 

10 7.0 3.6 7,0 3.6 0.5 
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Table II. Results for Shekel 5 function 

Number of Observed f~.~. % Error 
Evaluations 

1 -0.27311 97.310 
17 -4.86009 52.132 
63 -10.03485 1.166 

203 -10.15290 0.003 
393 -10.15307 0.001 
495 -10.15309 0.001 
499 -10.15310 0.001 

Table III. Results for Shekel 7 function 

Number of Observed f~.i. % Error 
Evaluations 

1 -0.293618 97.178 
17 -3.980522 61.736 
52 -7.261699 30.195 
79 -8.299829 20.216 
86 -10.30500 0.941 

203 -10.39877 0.040 
342 -10.40026 0.025 
381 -10.40254 0.003 
400 -10.40274 0.002 
442 -10.40289 0.000 
498 -10.40289 0.000 

Table IV. Results for Shekel 10 function 

Number of Observed fmi° % Error 
Evaluations 

1 -0.3217291 96.946 
17 -1.522084 85.554 
25 -1.957289 81.423 
43 -2.889846 72.573 
60 -4.613623 56.212 
61 -5.646820 46.406 
94 -8.808858 16.395 

105 -8.866760 15.846 
184 -9.080604 13.816 
250 -9.102548 13.608 
260 -10.35516 1.719 
262 -10.36986 1.580 
264 -10.50632 0.285 
323 -10.52791 0.080 
346 -10.53527 0.010 
364 -10.53611 0.002 
410 -10.53631 0.000 
497 -10.53631 0.1300 
500 -10.53632 0.0130 
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The true global minimum of each of these functions is -10.1532 for Shekel 5, 
-10.4029 for Shekel 7, and -10.5363 for Shekel 10. 

Next, the method will be used on the 3-d imens iona l  H a r t m a n  funct ion.  

f ( x ~ ,  x 2, x3) -- - c~ exp - ~ [ % ( x j  - p;j)2] 0 ~ x~ ~ 1 ,  i = 1, 2, 3 .  
i=l \ j=l  

(15) 

where: 

a r t  = 3 .0 ,  a12 = 10, a13 = 30,  P l l  = 0 .3689,  Pl2 = 0 .1170,  P13 = 0 . 2 6 7 3 ,  

a21 = 0 .1 ,  a22 = 10, a23 = 35, io21 = 0 .4699 ,  P2z = 0 .4387,  P23 = 0 . 7 4 7 0 ,  

a31 = 3 .0 ,  a32 = 10, a33 = 30, P31 = 0 .1091,  P3z = 0 .8732,  P33 = 0 . 5 5 4 7 ,  

a41 = 0 .1 ,  a4a = 10, a43 = 35,  P41 = 0.03815,  P42 = 0.5743,  P43 = 0 . 8 8 2 8 ,  

c 1 = 1.0,  c 2 = 1.2,  c 3 = 3.0,  Ca = 3 . 2 .  

The g l o b a l  m i n i m u m  of  this  f u n c t i o n  is fmin = - - 3 . 8 6 2 8 .  T h e  re su l t s  for  the 
H a r t m a n  3 f u n c t i o n  a r e  g i v e n  in  T a b l e  V. 

Table V. Results for Hartman 3 function 

Number of Observed fml, % Error 
Evaluations 

1 -0.0679741 98.240 
5 -0.0913323 97.636 
7 -0.334829 37.392 
9 -2.41803 14.187 

13 -3.314803 14.187 
15 -3.408731 11.755 
23 -3.620394 6.275 
40 -3.735579 3.293 
42 -3.770615 2.386 
58 -3.780158 2.139 
73 -3.789788 1.890 
94 -3.796772 1.709 

106 -3.837480 0.655 
108 -3.838003 0.642 
110 - 3.838687 0.624 
168 -3.839350 0.607 
277 -3.839473 0,604 
279 -3.839741 0.597 
281 -3.839815 0.595 
488 -3.839875 0.593 
489 -3.839913 0.592 
491 -3.839971 0.591 
492 -3.839994 0.590 
494 -3.840031 0,589 
497 -3,840072 0.588 
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The first of the two-dimensional test functions used is Branin's RCOS function. 

f(xa, x 2 )  = a ( x  2 - bx~  + cx~ - d )  2 + h(1 - f )  cos(x1) + h - 5 ~< x a ~< 10 ,  

0~<x 2 ~< 15 ,  (16) 

where a = l ,  b = 5 . 1 / 4 7 r  2 c=5/~r, d = 6 ,  h = 1 0 ,  f = l / 8 7 r .  This function has 
three global minima at (Xl, Xz) = ( -3 .14159 ,  12.275), (3.14159, 2.275),  (9.42478, 
2.475) with fmin = 0.397887. The observed fmin vs. number of evaluations is shown 
in Table VI. 

The other two-dimensional test function used is the Goldstein-Price function. 

f(x~, x2) = [1 + (x I + x 2 + 1)2(19 - 14x~ + 3x~ - 14x 2 + 6xlx z + 3x22)] 

× [30 + (2x 1 - 3x2)2(18 - 32x~ + lZx 2 + 48x2 - 36x~x2 + 27x~)] 
(17) 

Table  VI. Results for Branin (RCOS) function 

N u m b e r  of Observed f~i. % Error  
Evaluations 

1 3557.588000 - 
2 110.156100 - 
3 70.138240 - 
9 23.655400 - 

15 1.883487 373.372 
36 1.689419 324.598 
40 1.141987 187.013 
44 0.746591 87.639 
57 0.404955 1.776 

114 0.402524 1.165 
178 0.401011 0.785 
226 0.399969 0.523 
240 0.398964 0.271 
275 0.398921 0.260 
384 0.398892 0.253 
431 0.398886 0.251 
452 0.398819 0.234 

Table VII. Results for Goldstein & Price function 

N u m b e r  of Observed f~in % Error  
Evaluations 

1 24376.0 - 
5 147.5960 
8 50.94152 - 

13 3.627731 20.924 
40 3.227506 7.584 
77 3.006858 0.229 

235 3.004451 0.148 
280 3.004364 0.145 
290 3.004169 0.139 
340 3.004142 0.138 
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Table VIII. Number of evaluations to be within 1% error 

Function Normal Scores Ranks Multi-Univ. 

Shekel 5 203 50 500 
Shekel 7 86 50 500 
Shekel 10 264 100 831 
Hartman 3 106 70 93 
Branin 178 80 494 
Goldstein-Price 77 90 121 

This function has 5 local minima, with the global minimum of these being at (Xl, 
x2) = (0.0, -1 .0)  with fmin = 3. The observed frnin VS. number of iterations is given 
in Table VII. 

Conclusions 

Table VIII shows the number of evaluations needed to be within 1% error of the 
true minimum for each of the test functions. This is a very conservative termina- 
tion criterion for a global optimization method (after this point, a local optimiza- 
tion method would be employed to expedite the convergence toward the mini- 
mum). These results are compared to the results obtained using the multi- 
univariate method and the rank-transformed multi-univariate method. 

The use of normal scores significantly decreases the number of evaluations 
needed for convergence within 1% compared to the multi-univariate method. 
However, the use of the rank transformation still seems to provide faster 
convergence than the normal scores method. One advantage of using the normal 
scores method compared to the ranks method is that the total number of 
evaluations do not need to be prespecified (as long as the number of evaluations is 
less than the upper bound specified by Km). 
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